Telegram Group & Telegram Channel
Что вы знаете про работу с временными рядами?

Временной ряд — это последовательность значений, которые были измерены в определённом временном промежутке. Такой тип данных может появляться повсеместно. Например, компаниям часто требуется знать ответ на вопрос: что будет происходить с показателями в ближайший день/неделю/месяц. Такими показателями могут быть количество пользователей, установивших приложение, пиковый онлайн и т.д.

Работа с временными рядами — это в основном прогнозирование. С точки зрения машинного обучения мы занимаемся задачей регрессии — предсказываем следующее в ряду значение. Прогноз значения ряда в какой-то момент времени строится на основе известных значений ряда до этого момента времени. Также имеет смысл строить предсказательный интервал для значений.

Виды прогнозирования:

▪️Наивное: «завтра будет как вчера»
Или «почти как вчера». Тут чаще всего используется скользящее среднее для предсказания значение ряда.
Модификацией простого скользящего среднего является взвешенное среднее, внутри которого наблюдениям придаются различные веса, в сумме дающие единицу, при этом обычно последним наблюдениям присваивается больший вес.

▪️Менее наивное: экспоненциальное сглаживание
Вместо взвешивания последних n значений ряда мы будем взвешивать все доступные наблюдения, при этом экспоненциально уменьшая веса по мере углубления в исторические данные. В этом нам поможет формула простого экспоненциального сглаживания.
Можно расширить этот метод. Будем разбивать ряд на две составляющие — уровень (level, intercept) и тренд (trend, slope). Уровень — это и есть ожидаемое значение ряда, которое мы уже предсказывали. А тренд можно тоже прогнозировать при помощи экспоненциального сглаживания.
Кроме того, можно добавить третью компоненту — сезонность, и предсказывать её тоже. Такая модель тройного экспоненциального сглаживания больше известна по фамилиям её создателей — Чарльза Хольта и Питера Винтерса.

Среди других методов анализа временных рядов выделяются:

▪️ ARIMA;
▪️ Сезонная ARIMA (SARIMA);
▪️ Рекуррентные нейронные сети (RNN).

#машинное_обучение



tg-me.com/ds_interview_lib/326
Create:
Last Update:

Что вы знаете про работу с временными рядами?

Временной ряд — это последовательность значений, которые были измерены в определённом временном промежутке. Такой тип данных может появляться повсеместно. Например, компаниям часто требуется знать ответ на вопрос: что будет происходить с показателями в ближайший день/неделю/месяц. Такими показателями могут быть количество пользователей, установивших приложение, пиковый онлайн и т.д.

Работа с временными рядами — это в основном прогнозирование. С точки зрения машинного обучения мы занимаемся задачей регрессии — предсказываем следующее в ряду значение. Прогноз значения ряда в какой-то момент времени строится на основе известных значений ряда до этого момента времени. Также имеет смысл строить предсказательный интервал для значений.

Виды прогнозирования:

▪️Наивное: «завтра будет как вчера»
Или «почти как вчера». Тут чаще всего используется скользящее среднее для предсказания значение ряда.
Модификацией простого скользящего среднего является взвешенное среднее, внутри которого наблюдениям придаются различные веса, в сумме дающие единицу, при этом обычно последним наблюдениям присваивается больший вес.

▪️Менее наивное: экспоненциальное сглаживание
Вместо взвешивания последних n значений ряда мы будем взвешивать все доступные наблюдения, при этом экспоненциально уменьшая веса по мере углубления в исторические данные. В этом нам поможет формула простого экспоненциального сглаживания.
Можно расширить этот метод. Будем разбивать ряд на две составляющие — уровень (level, intercept) и тренд (trend, slope). Уровень — это и есть ожидаемое значение ряда, которое мы уже предсказывали. А тренд можно тоже прогнозировать при помощи экспоненциального сглаживания.
Кроме того, можно добавить третью компоненту — сезонность, и предсказывать её тоже. Такая модель тройного экспоненциального сглаживания больше известна по фамилиям её создателей — Чарльза Хольта и Питера Винтерса.

Среди других методов анализа временных рядов выделяются:

▪️ ARIMA;
▪️ Сезонная ARIMA (SARIMA);
▪️ Рекуррентные нейронные сети (RNN).

#машинное_обучение

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/326

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Telegram Auto-Delete Messages in Any Chat

Some messages aren’t supposed to last forever. There are some Telegram groups and conversations where it’s best if messages are automatically deleted in a day or a week. Here’s how to auto-delete messages in any Telegram chat. You can enable the auto-delete feature on a per-chat basis. It works for both one-on-one conversations and group chats. Previously, you needed to use the Secret Chat feature to automatically delete messages after a set time. At the time of writing, you can choose to automatically delete messages after a day or a week. Telegram starts the timer once they are sent, not after they are read. This won’t affect the messages that were sent before enabling the feature.

If riding a bucking bronco is your idea of fun, you’re going to love what the stock market has in store. Consider this past week’s ride a preview.The week’s action didn’t look like much, if you didn’t know better. The Dow Jones Industrial Average rose 213.12 points or 0.6%, while the S&P 500 advanced 0.5%, and the Nasdaq Composite ended little changed.

Библиотека собеса по Data Science | вопросы с собеседований from tr


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA